
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 417
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Modified Skip List in Concurrent Environment
Ranjeet Kaur, Dr. Pushpa Rani Suri, Professor.

Kaurranjeet2203@gmail.com
Kurukshetra University, Kurukshetra

Abstract— Traditional data structures give few considerations to their execution in concurrent environments. It is not sufficient to simply
move a traditional data structure into a concurrent environment and expect an improvement in performance by allocating additional
resources and processing power. In that direction we present an efficient and practical lock based MSL (modified skip list). MSL is a
modified version of basic skip list; we describe methods for performing concurrent access and update using MSL. Experimental result
shows that MSL structure is faster than original skip list structure for representation of dictionaries

Index Terms—Concurrency, Lock, Linearizability, MSL Skiplist, Thread.

—————————— ——————————

1. INTRODUCTION

n past decades, with the emergence of multiprocessing sys-
tems. There is a steady increase in the number of processors

available on commercial multiprocessors. This increase in the
availability of large computing platform has not been met by a
matching improvement in our ability to construct new data
structure. There is a requirement to shift the way we think and
construct data structures.
A data structure in a concurrent environment is access by
multiple computing threads (or processes) on a computer. The
proliferation of commercial shared-memory multiprocessor
machines has brought about significant changes in the art of
concurrent programming. Given current trends towards low
cost chip multithreading (CMT), such machines are bound to
become ever more widespread. Shared-memory multiproces-
sors are systems that concurrently execute multiple threads of
computation which communicate and synchronize through
data structures in shared memory. Designing concurrent data
structures and ensuring their correctness is a difficult task,
significantly more challenging than doing so for their sequen-
tial counter parts. The difficult of concurrency is aggravated
by the fact that threads are asynchronous since they are sub-
ject to page faults, interrupts, and so on. To manage the diffi-
culty of concurrent programming, multithreaded applications
need synchronization to ensure thread-safety by coordinating
the concurrent accesses of the threads. At the same time, it is
crucial to allow many operations to make progress concurrent-
ly and complete without interference in order to utilize the
parallel processing capabilities of contemporary architectures.
The traditional way to implement shared data structures is to
use mutual exclusion (locks) to ensure that concurrent opera-
tions do not interfere with one another. In concurrent search
structures, locks are used to prevent concurrent threads from
interfering with each other. A concurrency scheme must as-
sure the integrity of the data structure, avoid deadlock and
have a serializable schedule. Within those restrictions, we
would like the algorithms to be as simple, efficient and con-
current as possible.
Our concurrent MSL is using the locking techniques. This is
just the beginning to see how MSL behave in concurrent envi-
ronment.

2. SKIP LIST AND MODIFIED SKIP LIST
Skip-lists [1] are an increasingly important data structure for
storing and retrieving ordered in-memory data. SkipLists have
received little attention in the parallel computing world, in
spite of their highly decentralized nature. This structure uses
randomization and has a probabilistic time complexity of
O(logN) where N is the maximum number of elements in the
list.
The data structure is basically an ordered list with randomly
distributed short-cuts in order to improve search times, see
Figure 1. In this paper, we propose a new lock-based concur-
rent modified skip-list pseudo code that appears to perform as
well as the best existing concurrent skip-list implementation
under most common usage conditions. The principal ad-
vantage of our implementation is that it is much simpler, and
much easier to reason about. The original lock-based concur-
rent SkipList implementation by Pugh [2] is rather complex
due to its use of pointer-reversal,

Figure: 1

While the search, insert, and delete algorithms for skip lists are
simple and have probabilistic complexity of O (log n) when the
level 1 chain has
n elements. with these observations in mind [3] introduced
modified skip list(MSL) structure in which each node has one
data field and three pointer fields :left, right, and down. Each
level l chain worked separate doubly linked list. The down field
of level l node x points to the leftmost node in the level l-1
chain that has key value larger than the key in x. H and T re-

I

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 418
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

spectively , point to the head and tail of the level lcurrent chain.
Below figure 2 shows the MSL.

Figure: 2

Now in this paper we describe the simple concurrent algo-
rithms for access and update of MSL. Our algorithm based on
the lazy-list algorithm of [5], a simple concurrent linked-list al-
gorithm with an optimistic fine-grained locking scheme for the
add and remove operations, and a wait-free contains operation.

3. CONCURRENT OPERATIONS ON MSL
We now describe a method for performing concurrent opera-
tions’ on MSL. In MSL elements of the list are represented by a
node. The left pointer of a node points to previous node and
right pointer points to the next node in the list and the nodes are
kept in sorted order according their keys. The key of anode is
given by xkey, the value is given by xvalue and the left
pointer is given by xleft. The head (H) and tail (T) of a list l is
treated as a node and is given by lH and lT. For purposes of
reasoning about our invariants, the H and T have the sentinel
value (-infinity). The term thread refer to a task or process oper-
ating concurrently with other threads. A thread obtains a lock
on a field only when updating a field that other threads might
be attempting to update. While searching for an element, no
locks are needed. Only a single thread may hold a lock on a
field, and by convention a thread only updates a field if it al-
ready holds a lock on the field. If a thread attempts to lock a
field that is already locked, that thread is blocked until the lock
can be obtained.

4. ALGORITHM

We present a modified skip list algorithm in the context of an
implementation of n set objects supporting three methods,
search_node, insert_node, remove_node:search_node (key)
search for a node with key k equal to key, and return true if key
found otherwise return false. Insert_node (key, d) inserts adds d
to the set and returns true iff d was not already in the set; re-
move (v) removes v from the set and returns true iff d was in
the set. This paper also shows that the implementation is dead-
lock-free.the below figure 3 shows the field of a node.

node {
int key,
node ** left,
node **right,
node **down,
bool marked,
bool fullylinked,
lock lock
}

Figure: 3
4.1. SEARCH_NODE

Searching in MSL is accomplished by search_node procedure
see figure 3, which takes a key v and search exactly like a
searching in sequential linked list, starting at the highest level
and proceeding to the next down level each time it encounters a
node whose key is greater than or equal to v.the search process
also save the predecessor and successor of a searched node v for
further reference.

 Figure: 4

Note that search_node does not acquire any locks, nor does it
retry in case of conflicting access with some other thread. We
now consider each of the operation in turn.

4.2. THE INSERT_NODE OPERATION

The algorithm calls search_node to determine whether a node
with the key is already in the list. If so, and the node is not
marked, then the add operation returns false, indicating that
the key is already in the set. However, if that node is not yet
fully linked, then the thread waits until it is (because the key is
not in the abstract set until the node is fully linked). If the
node is marked, then some other thread is in the process of
deleting that node, so the thread doing the add operation
simply retries.
If no node was found with the appropriate key, then the

procedure search_node (int key):bool
{
p=h
while(p#NULL)
{
While(pvaluekey<key)do
{
p=pright
}
if(pvaluekey==key) then
return true and break
else
p=pleftdown
}
return false
}

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 419
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

thread locks and updates all the preceding and succeeding
nodes returned by search_node, whose pointers are associated
with the new node. The randomLevel function is used in the
beginning of insert_node operation to determine the level at
which new node to be. If the new node to be inserted in be-
tween of existing level then there is need to updates the pre-
decessor, successor and the adjacent down level nodes, all
depends on the various check applied on new node. If valida-
tion fails, the thread encountered a conflicting operation, so it
releases the locks and retries.

procedure insert_node(key,d)
{
int max=50,temp,current_level
k=randomlevel ()
node * found_node=null,*x,*h1,*t1
node *save[max] ,*t ,*s ,*d ,*u
while(true) {
//search the msl for a key k of d and save the necessary
pointers.
p=h
i=current_level
while (p#null) do
{
while(pdatakey<key) do
{
save[i]=p
p=pright
}
If(pdatakey==key)
{
found_node=p
Write “searched node is found at p”and break
 }
else
{
p=pleftdown
i=i-1
}
}
If (found_node != NULL)
{
if(! found_nodemarked)
{
while (found_nodefullylinked)
{ }
}
continue
 }
else
{
//create a new node x and set its value
//connect the new node at level returned by random func-
tion
temp=current_level

current_level=current_level+1
if(k>temp)
{
try {
s=save[temp]
t=save[temp]right
if (s!=null)
slock.lock()
valid = ! smarked && ! tmarked && sright==t
} }
if (! Valid) continue
else
{
// create new Head(H1) and tail(T1)
h1data=∞
h1right=x
h1left=null
h1down=h
h=h1
t1data=∞
t1right=null
t1left=x
t1down=t
t=t1
//update the new node pointers
xleft=h1
xright=t1
if((save[temp]rightdown)==NULL &&
(save[temp]rightdata>xd))
{
xdown= save[temp]right
}
}
elseif (k==1) // k is from existing levels
try
{
s=save[k]
t=save[k]right
d=save[k+1]right
if (s!=null&& d !=Null)
slock.lock()
dlock.lock()
valid = ! smarked && ! tmarked&& !dmarked&&
sright==t

}
if (! valid) continue
else
{
xleft=save[k]
xright=save[k]right
save[k]rightleft=x
if((save[k-1]rightdown)==NULL && (save[k-
1]rightdata>xd)) then
xdown= save[k-1]right
else
xdown=NULL
}
else //k is in between the current level ,the else of if-
then-elseif-else
{
try
{
s=save[k]
t=save[k]right

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 420
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Figure: 5

4.3. THE REMOVE_NODE OPERATION

The remove_node operation shown in Figure 5 , likewise calls
find_Node to determine whether a node with theappropriate
key is in the list. If so, the thread checks whether the node is
“okay to delete” means it is fully linked, not marked. If the
node meets these requirements, thethread locks the node and
verifies that it is still not marked. If so, the thread marks the
node, which logicallydeletes it;that is, the marking of the node

is the linearization point of the remove operation. The remain-
ing part of the procedure accomplishes the “physical” dele-
tion, removing the node from the list by first lockingits prede-
cessors, upward, and downward node. As in the insert_node
operation, before changing any of the deleted node’s prede-
cessors, the thread validates that those nodes are indeed still
the deleted node’spredecessors. This is done using the weak
Validate function, which is the same as validate except that
itdoes not fail if the successor is marked, since the successor in
this case should be the node to be removed thatwas just
marked. If the validation fails, then the thread releases the
locks on the old predecessors (but not thedeleted node) and
tries to find the new predecessors of the deleted node by call-
ing find_Node again. However, at this point it has already set
the local isMarked flag so that it will not try to mark another
node. Aftersuccessfully removing the deleted node from the
list, the thread releases all its locks and returns true.

d=save[k+1]right
u=save[k-1]right
if (s!=null && d !=Null&& u!=null)
{
slock.lock()
dlock.lock()
ulock.lock()
}
valid = ! smarked && ! tmarked && !dmarked
&&umarked&& sright==t
}
if (! valid) continue
else
{
node *x
xleft=save[k]
xright=save[k]right
save[k]rightleft=x
if((save[k-1]rightdown)==NULL OR (save[k-
1]rightdata>xd)) then
xdown= save [k-1]right
if ((save[k+1]rightdown)==NULL OR
(save[k+1]rightdata<xd)) then
xdown= save [k+1]right
else
xdown=NULL
}
}
xfullylinked=true
return true
finally
{
Unlock(s,d,u)
}
}

procedure remove_node (int v)
node *delete_node = null;

bool ismarked = false;
int found_node= -1
node *save,*t,*prev, *succ,*up
//search the msl for a key k of d and save the necessary
pointers.
p=h
i=current_level
while (p#null) do
{
While (pdatakey<key) do
{
p=pright
}
If (pdatakey==key&&found_node== -1)
{
found_node=i
Write “searched node is found at i” and stop
 }
else
{
save[i] =p
p=pleftdown
I=i-1
}
}
while (true)
{
if (isMarked || (found_node! = -1 &&right_to_delete
(p,found_node)))
{
i f (! isMarked)
{
delete_node=p
delete_nodelock.lock ()
if(delete_nodemarked)
{
delete_nodelock.unlock ()
return false
}
delete_nodemarked=true
ismarked=true
}
try
{
prev=delete_nodeleft
succ=delete_noderight
upp=save [i+1]leftdown
if (prev! =null &&succ! =null &&upp!=null)
{
prevlock. lock ()
succlock. lock ()
upplock. lock ()
}
valid= !prevmarked && !succmarked &&uppmarked
if (! valid) continue
delete_nodeleftright=delete_noderight
delete_noderightleft=delete_nodeleft
if (save [i+1]leftdown==p)
save [i+1]leftdown=pright
} //end of try
delete_nodelock.unlock ()

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 421
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

4.4. CONTAINS OPERATION

This operation just calls search_node and returns true if and
only if it finds a unmarked, fully linked node with the appro-
priate key. If it finds such a node, then it’s mean the key is in
the abstract set. However, as mentioned above, if the node is
marked, it is not so easy to see that it is safe to return false.

5. CORRECTNESS
This section, sketch a proof for concurrent modified skip-list
algorithm. There are three properties to prove algorithm cor-
rectness: that the algorithm implements a linearizable set, that it
is deadlock-free, the contains operation is wait-free, which we
define more precisely below

5.1. LINEARIZABILITY

Linearizability [4] is a correctness condition for concurrent ob-
jects that exploits the semantics of abstract data types. It permits
a highdegree of concurrency, yet it permits programmers to
specify and reason about concurrent objectsusing known tech-
niques from the sequential domain. Linearizability provides the
illusion that each operation applied by concurrent processes
takes effect instantaneously at some point between its invoca-
tion and its response.
For the sake of linearizable proof, few assumptions are made
like:
i) Nodes are initialized with their keys
ii) Next pointers of nodes are initialized with null
iii) The fullylinked and marked fields of nodes are

initilized with false value
With these assumptions in mind we can drive the following
lemma:
Lemma for a node n and 0<=j<= ntoplayer:

nright [j]!=null nkey<nright[j]key
we can define a relation I so that xi y if x right[i]=n or
there exists x’ such that xi x’ and x’right[i]=n; that is i is
the transitive closure of the relation that relates nodes to their
immediate successors at level i
using these observations, we can show that if xi y in any
reachable state of the algorithm ,then xI y in any subsequent
state unless there is an action that remove n out of the level-i
list, claim is already proved by[4], and that can also be appli-
cable on our algorithm. Because n must already be marked be-
fore being removed out of the MSL, and the fullylinked flag is
never set to false value, this claim implies that a key can be re-
moved from the abstract set only by marking its node.

5.2. DEADLOCK FREEDOM
The algorithm is deadlock free because a thread always acquires
locks on nodes with larger keys first ,if a thread holds a lock on
a node with k then it will not attempt to acquire a lock on a
node with key greater than or equal to k.

5.3. WAIT-FREEDOM
The contains operation is wait-free because it does not acquire
any locks, nor does it go for retry, it searches the MSL only once

6. CONCLUSION
We introduced a concurrent modified skiplist using a remarka-
bly simple algorithm. Our implementation is raw, various op-
timization to our algorithm are possible like we can replace the
locking with lock free techniques. The wait free traversal in con-
current MSL leads to simpler and possibly more efficient algo-
rithms for related data structures such as dictionaries.

7. REFERENCES

[1] Pugh, W. Skip lists: A probabilistic alternative to balanced trees. Communica-

tions of the ACM 33, 6 (June 1990),
[2] Pugh, W. Concurrent maintenance of skip lists. Tech. Rep. CS-TR-2222, 1990.
[3] S. Cho and S. Sahni. Weight-biased leftist trees and modified skip lists. ACM J.

Exp. Algorithmics, 1998.
[4] M. Herlihy’s and J. Wing. Linearizability: A correctness condition for concur-

rent objects. ACM Transactions on Programming Languages and Systems, Ju-
ly 1990.

[5] Heller, S., Herlihy’s, M., Luchangco, V., Moir, M., Shavit, N., and Scherer III,
W. N. A lazy concurrent list-based set algorithm. In Proceedings of 9th Inter-
national Conference on Principles of Distributed Systems (Dec. 2005).

return true
}
finally {
unlock (prev, succ, upp)
}
else
return false
}
}

bool contains (int v)
int item_found = search_Node (v) ;
 return (ltem_found ≠ -1)
&& item_foundrightfullylinked
&& item_foundrightmarked) ;

Bool right_to_delete(node *c ,int f)
{
return(cfullylinked &&
cmarked)
}

IJSER

http://www.ijser.org/

	1. Introduction
	2. Skip list and modified skip list
	3. Concurrent operations on MSL
	4. Algorithm
	5. Correctness
	6. Conclusion
	7. References

